AP Calculus Worksheet–Volume

- <u>Directions</u>: Complete the following on a separate sheet of paper. (Hint: Sketch the graph, determine the bounds, and determine whether you should use disc, washer, or shell.)
 - 1) The equations $y = x^2$, y = 0, and x = 2 define the bounds of a plane region. Find the volume of the solid obtained by rotating the region about the *x*-axis.
 - 2) The region in the first quadrant bounded by the graph of $y = \sec x$, $x = \frac{\pi}{4}$, and the axes is rotated about the *x*-axis. What is the volume of the solid generated?
 - 3) Find the volume of the solid formed by revolving the region bounded by the graphs of y = x+1, $y = x^3+1$, x = 0, and x = 1 about the *x*-axis.
 - 4) The equations $y = \sqrt{4+x}$, x = 0, and y = 0 define the bounds of a plane region. Find the volume of the solid obtained by rotating the region about the *x*-axis.
 - 5) The region in the first quadrant between the *x*-axis and the graph of $y = 6x x^2$ is rotated around the *y*-axis. What is the volume of the resulting solid of revolution?
 - 6) The equations $y = \frac{1}{(x-1)^3}$, x = -1, x = 0, and y = 0 define the bounds of a plane region. Find the volume of the solid obtained by rotating the region about the *x*-axis.
 - 7) Find the volume of the solid formed by revolving the region bounded by the graphs of y = x and $y = 3x x^2$ about the y-axis.
 - 8) The equations $y = \frac{1}{x}$, x = 1, x = 3, and y = 0 define the bounds of a plane region. Find the volume of the solid obtained by rotating the region about the *y*-axis.
 - 9) Find the volume of the solid formed by revolving the region bounded by the graphs of $y = 3x^2$ and y = 2x+1 about the *x*-axis.

Worksheet Answers

(1) $\frac{32}{5}\pi$	(2) π	(3) $\frac{29}{42}\pi$
(4) 8π	(5) 216π	(6) $\frac{31}{160}\pi$
(7) $\frac{8}{3}\pi$	(8) 4π	(9) $\frac{1088}{405}\pi$