Directions: Complete the following on a separate sheet of paper. (Hint: Sketch the graph, determine the bounds, and determine whether you should use disc, washer, or shell.)

1) The equations $y=x^{2}, y=0$, and $x=2$ define the bounds of a plane region. Find the volume of the solid obtained by rotating the region about the x-axis.
2) The region in the first quadrant bounded by the graph of $y=\sec x, x=\frac{\pi}{4}$, and the axes is rotated about the x-axis. What is the volume of the solid generated?
3) Find the volume of the solid formed by revolving the region bounded by the graphs of $y=x+1, y=x^{3}+1, x=0$, and $x=1$ about the x-axis.
4) The equations $y=\sqrt{4+x}, x=0$, and $y=0$ define the bounds of a plane region. Find the volume of the solid obtained by rotating the region about the x-axis.
5) The region in the first quadrant between the x-axis and the graph of $y=6 x-x^{2}$ is rotated around the y-axis. What is the volume of the resulting solid of revolution?
6) The equations $y=\frac{1}{(x-1)^{3}}, x=-1, x=0$, and $y=0$ define the bounds of a plane region. Find the volume of the solid obtained by rotating the region about the x-axis.
7) Find the volume of the solid formed by revolving the region bounded by the graphs of $y=x$ and $y=3 x-x^{2}$ about the y-axis.
8) The equations $y=\frac{1}{x}, x=1, x=3$, and $y=0$ define the bounds of a plane region. Find the volume of the solid obtained by rotating the region about the y-axis.
9) Find the volume of the solid formed by revolving the region bounded by the graphs of $y=3 x^{2}$ and $y=2 x+1$ about the x-axis.

Worksheet Answers
(1) $\frac{32}{5} \pi$
(2) π
(3) $\frac{29}{42} \pi$
(4) 8π
(5) 216π
(6) $\frac{31}{160} \pi$
(7) $\frac{8}{3} \pi$
(8) 4π
(9) $\frac{1088}{405} \pi$

