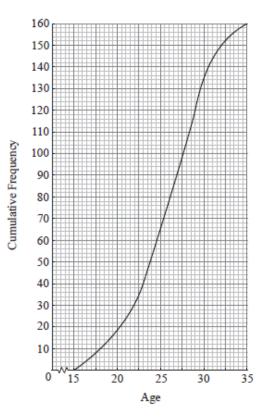
SL 1

ONE

A collection of five whole numbers has a mode of 3, a median of 4 and a mean of 5. List all the possible collections of five numbers.

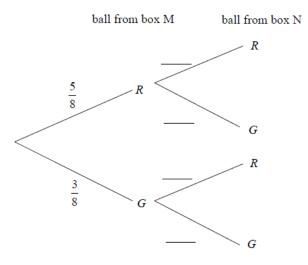

TWO

The ages of people attending a music concert are given in the table below.

Age	$15 \le x < 19$	$19 \le x < 23$	$23 \le x < 27$	$27 \le x < 31$	$31 \le x < 35$
Frequency	14	26	52	52	16
Cumulative Frequency	14	40	92	р	160

(a) Find p.

The cumulative frequency diagram is given below.



- (b) Use the diagram to estimate
 - (i) the 80th percentile;
 - (ii) the interquartile range.

Two boxes M and N contain red (R) and green (G) balls. Box M contains five red balls and three green balls. Box N contains four red balls and six green balls.

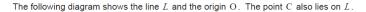
A ball is taken at random from box M and moved into box N. A ball is then taken at random from box N.

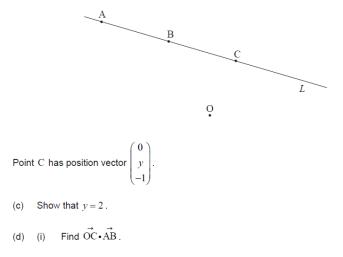
(a) Copy and complete the tree diagram.

- (b) Calculate the probability that the ball taken from box N is green.
- (c) Given that the ball taken from box N is green, find the probability that the ball taken from box M is red.

FOUR

Let *A* and *B* be events such that $P(A) = \frac{1}{2}$, $P(B) = \frac{3}{4}$ and $P(A \cup B) = \frac{7}{8}$.


- (a) Calculate $P(A \cap B)$.
- (b) Calculate P(A|B).
- (c) Are the events A and B independent? Give a reason for your answer.


FIVE

A line L passes through points A(-2, 4, 3) and B(-1, 3, 1).

(a) (i) Show that
$$\vec{AB} = \begin{pmatrix} 1 \\ -1 \\ -2 \end{pmatrix}$$

(ii) Find $\left| \vec{AB} \right|$.

(b) Find a vector equation for L.

- (ii) Hence, write down the size of the angle between OC and L.
- (e) Hence or otherwise, find the area of triangle OAB.

SIX

A line L_1 passes though points P(-1, 6, -1) and Q(0, 4, 1).

(a) (i) Show that $\overrightarrow{PQ} = \begin{pmatrix} 1 \\ -2 \\ 2 \end{pmatrix}$.

(ii) Hence, write down an equation for L_1 in the form r = a + tb.

A second line L_2 has equation $r = \begin{pmatrix} 4 \\ 2 \\ -1 \end{pmatrix} + s \begin{pmatrix} 3 \\ 0 \\ -4 \end{pmatrix}$.

- (b) Find the cosine of the angle between \overrightarrow{PQ} and L_2 .
- (c) The lines L_1 and L_2 intersect at the point R. Find the coordinates of R.

https://goo.gl/M01Az3