Volumes of Revolution: Disks and Washers

1. A region enclosed by the x-axis, $x=-\frac{\pi}{2}, x=\frac{\pi}{2}$, and $y=\cos x$. Write an expression that represents the volume of the solid when the region is rotated about the x -axis.
2. Find the volume of the solid generated when the region R enclosed by the line $y=-2$, the line $x=2$ and the curve $f(x)=x^{2}-2$, when revolved about the line $y=-2$.

3. What is the volume of the solid generated when the region enclosed by $y=x^{2}$, the y-axis, and $y=$ 1 is rotated about the line $=1$?
4. Find the volume of the solid generated when the region enclosed by $y=x^{3}, y=1$, the line $x=3$, and the x axis, is rotated about the line $y=1$.
5. Write an expression representing the volume of the solid generated when the region enclosed by $y=$ $\ln (x+1)$, the line $=4$, and the x-axis when rotated about the x-axis.
6. Find the volume of the solid generated when the region enclosed by $y=2 \sin x$, the y-axis, and $y=2$, is rotated about $y=2$.
7. (Calculator allowed). Let R be the region bounded by the graph of $y=-x+2$ and $y=-\ln (x)$ as shown.
a) Find the volume of the solid generated when R is rotated about a horizontal line $y=-2$.

b) Find the volume of the solid generated when R is rotated about the y-axis.
8. Let R be the region in the first quadrant bounded by the graph of $y=\sqrt{x}$ and $=\frac{x}{2}$. Find the volume of the solid generated when R is rotated about the vertical line $x=-2$.
9. (Calculator allowed). Let R be the region enclosed by the graphs of $y=e^{-x}$ and $y=(x-1)^{2}$.
a) Find the volume of the solid generated when R is revolved about the x-axis.
b) Set up, but do not evaluate, an integral expression for the volume of the solid generated when R is revolved about the y-axis.
10. Let R be the region bounded by the x-axis, the y-axis, the graph of $y=\sqrt{x}+1$ and the line $x=4$.
a) Find the volume of the solid generated when R is revolved about the x-axis.
b) Find the volume of the solid when R is revolved about the y-axis.
11. Let R be the region bounded by the x-axis, the graph of $y=\sqrt{x-1}$ and the line $=5$. The vertical line $x=k$ divides the region R into two regions such that when these two regions are revolved about the x axis they generate solids of equal volumes. Find the value of k.
12. The region bounded by $y=e^{-x}, y=1$, and $x=3$ is rotated about the x-axis. Find the volume of the solid generated.
13. A region is bounded by $y=1+x^{2}$, and $y=5$. Find the volume of the solid generated when the region is rotated:
a) About the x-axis
b) About the y-axis
c) About $y=-1$
d) About $x=-2$
14. A solid generated when the region in the first quadrant enclosed by $y=\left(x^{2}-1\right)^{2}$, the x-axis, and the y-axis, is revolved about the x-axis. The volume is found by evaluating which of the following integrals?

$$
\left.\begin{array}{c}
\text { A. } \pi \int_{0}^{1}\left(x^{2}-1\right)^{2} d x \\
\text { B. } \pi \int_{0}^{9}\left(x^{2}-1\right)^{2} d x
\end{array} \quad \text { C. } 2 \pi \int_{0}^{1}\left(x^{2}-1\right)^{4} d x\right] \text { D. } \pi \int_{0}^{1}\left(x^{2}-1\right)^{4} d x \quad \text { E. } \pi \int_{-1}^{1}\left(x^{2}-1\right)^{4} d x \text {. }
$$

15. Find the volume of a solid generated by revolving about the y axis the region enclosed by the graphs of $y=4-x^{2}$ and $y=4-2 x$.

ANSWERS - Volumes of Revolution: Disks and Washers

1. $\pi \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}(\cos x)^{2} d x$
2. $\frac{32 \pi}{5}$
3. $\frac{8 \pi}{15}$
4. $\frac{33 \pi}{14}$
5. $\pi \int_{0}^{4}(\ln (x+1))^{2}$
6. $3 \pi^{2}-8 \pi$
7. a) 27.033
b) 17.099
8. $\frac{48 \pi}{5}$
9. a) 0.845
b) $\pi \int_{0}^{.228}\left[(1+\sqrt{y})^{2}-(1-\sqrt{y})^{2}\right] d y+\pi \int_{.228}^{1}\left[(-\ln y)^{2}-(1-\sqrt{y})^{2}\right] d y$
10. a) $\frac{68 \pi}{3}$
b) $\frac{208 \pi}{5}$
11. $1+2 \sqrt{2}$
12. $\pi\left[\frac{5}{2}+\frac{1}{2 e^{6}}\right]$
13. a) $\frac{1088 \pi}{15}$
b) 8π
c) $\frac{1408 \pi}{15}$
d) $\frac{128 \pi}{3}$
14. D
15. $\frac{8 \pi}{3}$
