## Unit 8 Free Response Review

## A graphing calculator is required for problems 1-3

1. On a certain workday, the rate, in tons per hour, at which unprocessed gravel arrives at a gravel processing plant is modeled by $G(t)=90+45 \cos \left(\frac{t^{2}}{18}\right)$, where $t$ is measured in hours and $0 \leq t \leq 8$. At the beginning of the workday $(t=0)$, the plant has 500 tons of unprocessed gravel. During the hours of operation, $0 \leq t \leq 8$, the plant processes gravel at a constant rate of 100 tons per hour.
(a) Find $G^{\prime}(5)$. Using correct units, interpret your answer in the context of the problem.
(b) Find the total amount of unprocessed gravel that arrives at the plant during the hours of operation on this workday.
(c) Is the amount of unprocessed gravel at the plant increasing or decreasing at time $t=5$ hours? Show the work that leads to your answer.
(d) What is the maximum amount of unprocessed gravel at the plant during the hours of operation on this workday? Justify your answer.
2. A particle moves along a straight line. For $0 \leq t \leq 5$, the velocity of the particle is given by $v(t)=-2+\left(t^{2}+3 t\right)^{6 / 5}-t^{3}$, and the position of the particle is given by $s(t)$. It is known that $s(0)=10$.
(a) Find all values of $t$ in the interval $2 \leq t \leq 4$ for which the speed of the particle is 2 .
(b) Write an expression involving an integral that gives the position $s(t)$. Use this expression to find the position of the particle at time $t=5$.
(c) Find all times $t$ in the interval $0 \leq t \leq 5$ at which the particle changes direction. Justify your answer.
(d) Is the speed of the particle increasing or decreasing at time $t=4$ ? Give a reason for your answer.

3. There are 700 people in line for a popular amusement-park ride when the ride begins operation in the morning. Once it begins operation, the ride accepts passengers until the park closes 8 hours later. While there is a line, people move onto the ride at a rate of 800 people per hour. The graph above shows the rate, $r(t)$, at which people arrive at the ride throughout the day. Time $t$ is measured in hours from the time the ride begins operation.
(a) How many people arrive at the ride between $t=0$ and $t=3$ ? Show the computations that lead to your answer.
(b) Is the number of people waiting in line to get on the ride increasing or decreasing between $t=2$ and $t=3$ ? Justify your answer.
(c) At what time $t$ is the line for the ride the longest? How many people are in line at that time? Justify your answers.
(d) Write, but do not solve, an equation involving an integral expression of $r$ whose solution gives the earliest time $t$ at which there is no longer a line for the ride.

## No calculator is allowed for problems 4-6


4. A particle moves along the $x$-axis so that its velocity at time $t$, for $0 \leq t \leq 6$, is given by a differentiable function $v$ whose graph is shown above. The velocity is 0 at $t=0, t=3$, and $t=5$, and the graph has horizontal tangents at $t=1$ and $t=4$. The areas of the regions bounded by the $t$-axis and the graph of $v$ on the intervals $[0,3],[3,5]$, and $[5,6]$ are 8,3 , and 2 , respectively. At time $t=0$, the particle is at $x=-2$.
(a) For $0 \leq t \leq 6$, find both the time and the position of the particle when the particle is farthest to the left. Justify your answer.
(b) For how many values of $t$, where $0 \leq t \leq 6$, is the particle at $x=-8$ ? Explain your reasoning.
(c) On the interval $2<t<3$, is the speed of the particle increasing or decreasing? Give a reason for your answer.
(d) During what time intervals, if any, is the acceleration of the particle negative? Justify your answer.

5. A car is traveling on a straight road. For $0 \leq t \leq 24$ seconds, the car's velocity $v(t)$, in meters per second, is modeled by the piecewise-linear function defined by the graph above.
(a) Find $\int_{0}^{24} v(t) d t$. Using correct units, explain the meaning of $\int_{0}^{24} v(t) d t$.
(b) For each of $v^{\prime}(4)$ and $v^{\prime}(20)$, find the value or explain why it does not exist. Indicate units of measure.
(c) Let $a(t)$ be the car's acceleration at time $t$, in meters per second per second. For $0<t<24$, write a piecewise-defined function for $a(t)$.
(d) Find the average rate of change of $v$ over the interval $8 \leq t \leq 20$. Does the Mean Value Theorem guarantee a value of $c$, for $8<c<20$, such that $v^{\prime}(c)$ is equal to this average rate of change? Why or why not?
6. For $0 \leq t \leq 12$, a particle moves along the $x$-axis. The velocity of the particle at time $t$ is given by $v(t)=\cos \left(\frac{\pi}{6} t\right)$. The particle is at position $x=-2$ at time $t=0$.
(a) For $0 \leq t \leq 12$, when is the particle moving to the left?
(b) Write, but do not evaluate, an integral expression that gives the total distance traveled by the particle from time $t=0$ to time $t=6$.
(c) Find the acceleration of the particle at time $t$. Is the speed of the particle increasing, decreasing, or neither at time $t=4$ ? Explain your reasoning.
(d) Find the position of the particle at time $t=4$.

