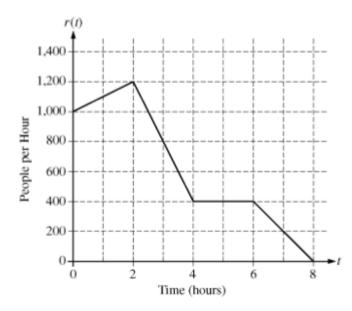
Unit 8 Free Response Review

A graphing calculator is required for problems 1-3

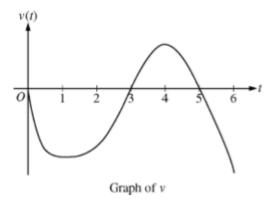
- 1. On a certain workday, the rate, in tons per hour, at which unprocessed gravel arrives at a gravel processing plant is modeled by $G(t) = 90 + 45\cos\left(\frac{t^2}{18}\right)$, where t is measured in hours and $0 \le t \le 8$. At the beginning of the workday (t = 0), the plant has 500 tons of unprocessed gravel. During the hours of operation, $0 \le t \le 8$, the plant processes gravel at a constant rate of 100 tons per hour.
 - (a) Find G'(5). Using correct units, interpret your answer in the context of the problem.
 - (b) Find the total amount of unprocessed gravel that arrives at the plant during the hours of operation on this workday.
 - (c) Is the amount of unprocessed gravel at the plant increasing or decreasing at time t = 5 hours? Show the work that leads to your answer.
 - (d) What is the maximum amount of unprocessed gravel at the plant during the hours of operation on this workday? Justify your answer.

- 2. A particle moves along a straight line. For $0 \le t \le 5$, the velocity of the particle is given by $v(t) = -2 + (t^2 + 3t)^{6/5} t^3$, and the position of the particle is given by s(t). It is known that s(0) = 10.
 - (a) Find all values of t in the interval $2 \le t \le 4$ for which the speed of the particle is 2.
 - (b) Write an expression involving an integral that gives the position s(t). Use this expression to find the position of the particle at time t = 5.
 - (c) Find all times t in the interval $0 \le t \le 5$ at which the particle changes direction. Justify your answer.
 - (d) Is the speed of the particle increasing or decreasing at time t = 4? Give a reason for your answer.

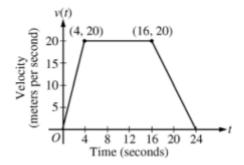


- 3. There are 700 people in line for a popular amusement-park ride when the ride begins operation in the morning. Once it begins operation, the ride accepts passengers until the park closes 8 hours later. While there is a line, people move onto the ride at a rate of 800 people per hour. The graph above shows the rate, r(t), at which people arrive at the ride throughout the day. Time t is measured in hours from the time the ride begins operation.
 - (a) How many people arrive at the ride between t = 0 and t = 3? Show the computations that lead to your answer.
 - (b) Is the number of people waiting in line to get on the ride increasing or decreasing between t = 2 and t = 3? Justify your answer.
 - (c) At what time t is the line for the ride the longest? How many people are in line at that time? Justify your answers.
 - (d) Write, but do not solve, an equation involving an integral expression of r whose solution gives the earliest time t at which there is no longer a line for the ride.

No calculator is allowed for problems 4-6



- 4. A particle moves along the x-axis so that its velocity at time t, for 0 ≤ t ≤ 6, is given by a differentiable function v whose graph is shown above. The velocity is 0 at t = 0, t = 3, and t = 5, and the graph has horizontal tangents at t = 1 and t = 4. The areas of the regions bounded by the t-axis and the graph of v on the intervals [0, 3], [3, 5], and [5, 6] are 8, 3, and 2, respectively. At time t = 0, the particle is at x = -2.
 - (a) For 0 ≤ t ≤ 6, find both the time and the position of the particle when the particle is farthest to the left. Justify your answer.
 - (b) For how many values of t, where $0 \le t \le 6$, is the particle at x = -8? Explain your reasoning.
 - (c) On the interval 2 < t < 3, is the speed of the particle increasing or decreasing? Give a reason for your answer.</p>
 - (d) During what time intervals, if any, is the acceleration of the particle negative? Justify your answer.



- A car is traveling on a straight road. For 0 ≤ t ≤ 24 seconds, the car's velocity v(t), in meters per second, is modeled by the piecewise-linear function defined by the graph above.
 - (a) Find $\int_0^{24} v(t) dt$. Using correct units, explain the meaning of $\int_0^{24} v(t) dt$.
 - (b) For each of v'(4) and v'(20), find the value or explain why it does not exist. Indicate units of measure.
 - (c) Let a(t) be the car's acceleration at time t, in meters per second per second. For 0 < t < 24, write a piecewise-defined function for a(t).</p>
 - (d) Find the average rate of change of v over the interval 8 ≤ t ≤ 20. Does the Mean Value Theorem guarantee a value of c, for 8 < c < 20, such that v'(c) is equal to this average rate of change? Why or why not?</p>

- 6. For $0 \le t \le 12$, a particle moves along the x-axis. The velocity of the particle at time t is given by $v(t) = \cos\left(\frac{\pi}{6}t\right)$. The particle is at position x = -2 at time t = 0.
 - (a) For 0 ≤ t ≤ 12, when is the particle moving to the left?
 - (b) Write, but do not evaluate, an integral expression that gives the total distance traveled by the particle from time t = 0 to time t = 6.
 - (c) Find the acceleration of the particle at time t. Is the speed of the particle increasing, decreasing, or neither at time t = 4 ? Explain your reasoning.
 - (d) Find the position of the particle at time t = 4.