1) Consider the curve defined by the equation $y^{3}+3 x^{2} y+13=0$.
a. Find $\frac{d y}{d x}$.
b. Write an equation for the line tangent to the curve at $(2,-1)$.
c. Find the minimum y-coordinate of any point on the curve. Justify your answer.

2) Consider the graph above as the $f^{\prime}(x)$, the derivative of $f(x)$. The domain of the function $f(x)$ is the set of all x such that $-10 \leq x \leq 10$. The graph of $f^{\prime}(x)$ has a zero slope when $x=-4,2,5$.
a. For what values of x does the graph of f have a horizontal tangent?
b. For what values of x in the interval $(-10,10)$ does f have a relative maximum. Justify.
c. For what values of x is the graph concave downward? Justify your answer.
3) Consider the curve given by $y^{2}=2+x y$.
a. Show that $\frac{d y}{d x}=\frac{y}{2 y-x}$
b. Find all the points (x, y) on the curve where the line tangent has slope $\frac{1}{2}$
c. Show that there are no points (x, y) on the curve where the line tangent is horizontal.
d. Let x and y be functions of time that are related by the equation $y^{2}=2+x y$.

At time $t=5$, the value of y is 3 and $\frac{d y}{d t}=6$. Find the value of $\frac{d x}{d t}$ at time $\mathrm{t}=5$.
4) Let f be a function that is even and continuous on the closed interval [-3, 3].

The function f and its derivatives have the properties indicated in the table below.

x	0	$0<\mathrm{x}<1$	1	$1<\mathrm{x}<2$	2	$2<\mathrm{x}<3$
$f(x)$	1	POS	0	NEG	-1	NEG
$f^{\prime}(x)$	undefined	NEG	0	NEG	undefined	POS
$f^{\prime \prime}(x)$	undefined	POS	0	NEG	undefined	NEG

a. Find the x-coordinate of each point at which f attains an absolute maximum value or an absolute minimum value. Justify your answers.
b. Find the x-coordinate of each point of inflection on the graph of f. Justify your answers.
c. Sketch the graph of a function with the given characteristics of f.
5) Let f be the function given by $f(x)=x^{3}-5 x^{2}+3 x+k$, where k is a constant.
a. On what intervals is f increasing?
b. On what intervals is f concave downward?
c. Find the value of k for which f has 11 as its relative minimum.
6) Consider the curve defined by the equation $y+\cos y=x+1$ for $0 \leq y \leq 2 \pi$.
a. Find $\frac{d y}{d x}$ in terms of y.
b. Write an equation for each vertical tangent to the curve.
c. Find $\frac{d^{2} y}{d x^{2}}$ in terms of y.
7) Consider the curve given by $x^{2}+4 y^{2}=7+3 x y$
a. Show that $\frac{d y}{d x}=\frac{3 y-2 x}{8 y-3 x}$
b. Show that there is a point on the curve P, where the x-coordinate is 3 at which the line tangent to the curve at point P is horizontal. Find the y -coordinate.
c. Find the value of $\frac{d^{2} y}{d x^{2}}$ at point P (from part b). Does the curve have a local maximum, local minimum or neither at point P ? Why?
8) The figure below shows the graph of $f^{\prime}(x)$, the derivative of $f(x)$. Using the domain for $f(x)$ is $-1 \leq x \leq 5$, where $f^{\prime}(x)$ graph has a horizontal tangent at $x=1$, and $x=3$. Given $f(2)=6$.
a. Find the x-coordinate of each point of inflection of $f(x)$. Give a reason.
b. Where does $f(x)$ have and absolute minimum? Where does $f(x)$ have an absolute maximum?
c. If $g(x)=x \cdot f(x)$, find the equation of the line tangent to $g(x)$ at $x=2$.

Curve Sketching Review \#2

1A) $\frac{d y}{d x}=\frac{-6 x y}{3 y^{2}+3 x^{2}}=\frac{-2 x y}{y^{2}+x^{2}}$
1B) $y+1=\frac{4}{5}(x-2)$
1C) if $\frac{d y}{d x}=\frac{-6 x y}{3 y^{2}+3 x^{2}}=\frac{-2 x y}{y^{2}+x^{2}}=0$ then either $\mathrm{x}=0$ or $\mathrm{y}=0 \ldots y \neq 0$, therefore $x=0$ in the original equation when $y=\sqrt[3]{-13}$

2A) $\quad f(x)$ has a horizontal tangent when $x=-7,-1,4,8$
2B) $\quad f(x)$ has a relative maximum when $x=-1$ and 8 , because $f^{\prime}(x)$ values change from positive to negative
2C) $\quad f(x)$ is concave down when the slopes of $f^{\prime}(x)<0(-4,2) U(5,10)$
$2 y \frac{d y}{d x}=x \frac{d y}{d x}+y$
3A)
$(2 y-x) \frac{d y}{d x}=y$
$\frac{d y}{d x}=\frac{y}{(2 y-x)}$

3B) when $\frac{d y}{d x}=\frac{y}{(2 y-x)}=1 / 2$ when $x=0$ and from the original equation $y= \pm \sqrt{2}$, so...answers are $(0, \sqrt{2})$ and $(0,-\sqrt{2})$

3C) if the curve is horizontal, $\frac{d y}{d x}=\frac{y}{(2 y-x)}=0$ therefore $y=0 . y \neq 0$ from the original equation, therefore there are no horizontal tangents
$2 y \frac{d y}{d t}=x \frac{d y}{d t}+y \frac{d x}{d t}$
3D) $2(3)(6)=\left(\frac{7}{3}\right)(6)+(3) \frac{d x}{d t}$
$\frac{d x}{d t}=\left(\frac{22}{3}\right)$
4A) EVEN FUNCTIONS SYMMETRIC OVER y-axis
ABSOLUTE MAX @ x = 0
ABSOLUTE MIN @ x=-2, 2
4B) Point of inflection @ $(-1,0) \&(1,0)$
4C)

5A) $\quad\left(-\infty, \frac{1}{3}\right) \cup(3, \infty) f^{\prime}(x)$ values are positive
5B) $\quad\left(-\infty, \frac{5}{3}\right) \quad f^{\prime \prime}(x)$ values are negative
5C) from Part A, relative min exists if and only if $x=3$, therefore $f(3)=11=3^{3}-5 \cdot 3^{2}+3 \cdot 3+k ; k=20$

6A) $\frac{d y}{d x}=\frac{1}{1-\sin y}$
6B) vertical line has undefined slope, therefore, if 1 -sin $\mathrm{y}=0$, then $\frac{d y}{d x}$ is undefined.
When $\mathrm{y}=\frac{\pi}{2}$ the equation of the vertical line is $\mathrm{x}=\frac{\pi}{2}-1$
6C) $\frac{d^{2} y}{d x^{2}}=\frac{\cos y}{(1-\sin y)^{2}} \frac{d y}{d x}=\frac{\cos y}{(1-\sin y)^{3}}$

7A) True

7B) find both in either order: $\mathrm{x}=3 ; x^{2}+4 y^{2}=7+3 x y$; dy/dx $=0$.
Point $\mathrm{P}(3,2) \rightarrow \mathrm{y}$-coordinate $=2$.
C) because $\mathrm{dy} / \mathrm{dx}=0$, there is a horizontal tangent line. Must use concavity (second derivative) to find if it's a max, min or neither at $(3,2)$. $(3,2)$ is a max.
$8 A) x=1,3$ because the slopes of $f^{\prime}(x)$ (i.e. $\left.f^{\prime \prime}(x)\right)$ changes signs.

8B) Abs. min at $x=4$; Abs. max at $x=-1$

8C) $y-12=4(x-2)$

