\qquad

1. Find the area of the region in the first quadrant enclosed by $y=4-x^{2}, y=3 x$, and the y-axis.
2. Find the area of the region between the graphs of $y=\sqrt[3]{x}$ and $y=x^{2}-2 x-8$.
3. Find the volume of the solid generated by rotating the region bounded by the graphs of $y=\frac{1}{2} x, x=6$, and the x-axis about the x-axis.
4. Find the volume of the solid generated by rotating the region bounded by the graphs of $x=5-y^{2}$ and $x=y-1$ about the line $x=-4$.
5. Let R be the region bounded by the graphs of $y=2 x^{3}, y=0$, and $y=3-x$.
a) Find the area of region R.

b) Find the volume of the solid generated by rotating R about the x -axis.
c) Find the volume of the solid generated by rotating R about the y-axis.
d) The region R is the base of a solid. For this solid, cross sections perpendicular to the y-axis are semicircles. Find the volume of this solid.
6. Let R be the region in the first quadrant bounded by the graphs of $y=\frac{1}{x+2}$ and $x=4$.

a) Find the volume of the solid generated by rotating R about the line $y=-1$
b) Find the volume of the solid generated by rotating R about the line $y=3$
c) The vertical line $x=k$ divides the region into two regions of equal area. Find the value of k.
d) The region R is the base of a solid. For this solid, cross sections perpendicular to the x-axis are equilateral triangles. Find the volume of this solid.
7. Find the length of the curve $y=x \cos x$ over the interval $0 \leq x \leq \pi$.
8. Find the length of the curve $x=\frac{1}{2} y^{2}+y-\frac{1}{2}$ from $y=-1$ to $y=3$.
9. A particle moves along the x-axis so that its velocity v at time t, for $0 \leq t \leq 5$, is given by $v(t)=\ln \left(t^{2}-3 t+3\right)$. The particle is at position $x=8$ at time $t=0$.
a) Find the acceleration of the particle at time $t=4$.
b) Find all times t in the open interval $0<t<5$ at which the particle changes direction. During which time intervals, for $0 \leq t \leq 5$, does the particle travel to the left?
c) Find the position of the particle at time $t=2$.
d) Find the average speed of the particle over the interval $0 \leq t \leq 2$.
10. A water tank at Camp Newton holds 1200 gallons of water at time $t=0$. During the time interval $0 \leq t \leq 18$ hours, water is pumped into the tank at the rate

$$
W(t)=95 \sqrt{t} \sin ^{2}\left(\frac{t}{6}\right) \text { gallons per hour. }
$$

During the same time interval, water is removed from the tank at the rate

$$
R(t)=275 \sin ^{2}\left(\frac{t}{3}\right) \text { gallons per hour. }
$$

a) Is the amount of water in the tank increasing at time $t=15$? Why or why not?
b) To the nearest whole number, how many gallons of water are in the tank at time $t=18$?
c) At what time $t, 0 \leq t \leq 18$, is the amount of water in the tank at an absolute minimum? Show the work that leads to your conclusion.
d) For $t>18$, no water is pumped into the tank, but water continues to be removed at the rate $R(t)$ until the tank becomes empty. Let k be the time at which the tank becomes empty. Write, but do not solve, an equation involving an integral expression that can be used to find the value of k.

