Unit 9 (DIFFERENTIAL EQUATIONS) REVIEW

1. Consider the differential equation $\frac{d y}{d x}=3 x^{2}$
a) Find a solution $\mathrm{y}=f(\mathrm{x})$ to the differential equation satisfying $f(0)=4$.
b) Use the equation of tangent line of $f(0)=4$ to approximate the value of $f(0.2)$
c) Find the domain and range of the function $y=f(x)$ found in part a.
2. Let f be a function with $f(2)=1$ such that for all point (x, y) on the graph of f the slope is given by $\frac{2 x^{3}+5}{3 y}$.
a) Find the slope of the graph of f at the point where $x=2$.
b) Write an equation for the line tangent to the graph of f at $x=2$ and use it to approximate $f(2.1)$.
c) Find $f(x)$ by solving the separable differentiable equation $\frac{2 x^{3}+5}{3 y}$.
d) Use your solution from part (c) to find $f(2.1)$.
3. Consider the differential equation given by $\frac{d y}{d x}=\frac{-x y}{3}$.
a) Sketch a slope-field for the nine points. $[(-1,1),(-1,2),(-1,3),(0,1),(0,2),(0,3),(1,1),(1,2),(1,3)]$
b) Let $y=f(x)$ be the particular solution to the differential equation with $f(0)=3$. Use the equation of the tangent line to approximate $f(0.2)$. Show all work.
c) Find the particular solution $y=f(x)$ to the differential equation with $f(0)=3$. Use your solution to find $f(0.2)$.
4. Given that the rate of growth of a population is proportional to the population at any given time, use the following information to answer the questions below. The initial population is 9 .
a) Use separation of variables to find the particular solution $y(x)$ to the differential equation with the given initial values.
b) Given that the population grows to 72 after only 5 days, find the growth constant k.
c) Use your calculator to find when the population will reach 200, if the growth continues at this same rate.

Answer Key

1. a) $y=x^{3}+4$
b) $y(0.2) \approx 4$
c) $\mathrm{D}=$ all real $\mathrm{R}=$ all real
2. a) 7
b) $\mathrm{f}(2.1) \approx 1.7$
c) $y= \pm \sqrt{\frac{1}{3} x^{4}+\frac{10}{3} x+C}$
d) $f(2.1)=1.575658$
3. a) Slope Field
b) $y(0.2) \approx 3$
c) $y(0.2)=2.9800$
4. a) $y=9 e^{k t}$
b) $\mathrm{k}=0.41588$
c) $t=7.4567$ days
