Unit 7 (Areas and Volumes) Review #2

Setup but do not solve the integrals for each. Do not use a calculator.

1. Use the curves $f(x) = x^2$ and g(x) = 2x to answer the following.

a) Find the area between the curves.

b) Find the average value of f(x) over the interval [-1, 5].

c) Find the volume if the cross-sections are equilateral triangles perpendicular to the *x*-axis.

d) Find the volume of the solid rotated about the line y = -3.

e) Find the volume of the solid rotated about the line x = -2.

Solve using a graphing calculator.

2. Find the volume of the solid of revolution generated by revolving the region bounded by $y = 2x^2$, y = 0, and x = 2 about:

a) the *y*-axisb) the *x*-axis

c) the line y = 8

3. Find the volume of the solid of revolution generated by revolving the region bounded by $y = 6 - 2x - x^2$ and y = x + 6 about: a) the *x*-axis b) the line y = 3

4. The region in Quadrant I, bounded by the graph of $f(x)=1-e^{-x}$ and $g(x)=x^3$ is the base of a solid. Find the volume of this solid, if a) each cross section perpendicular to the x-axis is an isosceles right triangle with one

leg across the base of the solid.

b) each cross section perpendicular to the *x*-axis is a square.

5. Let *R* and *S* be the regions bounded by the graphs of $f(x)=1-\cos x$ and $g(x)=\sqrt{x}$ in Quadrant I.

a) Find the total area of the regions bounded by f and g in Quadrant I, that is, R + S

b) Region R is the base of a solid. For this solid, each cross section perpendicular to the *x*-axis is an equilateral triangle. Find the volume of this solid.

c) Region *S* is the base of another solid. For this solid, each cross section perpendicular to the *x*-axis is a semicircle. Find the volume of this solid.

6. Find the volume of the solid of revolution generated by revolving the region bounded by $y = \sqrt{x}$, y = 0, and x = 4 about: a) the *x*-axis

b) the *y*-axis

- c) the line x = 4
- **d**) the line x = 6

7. Given the equations
$$x = y^2$$
 and $x = -\frac{1}{2}y + 3$, find:

a) the area between the curves.

b) the average value of the function $y = -\sqrt{x}$ over the interval [1, 9].

- c) the volume if the cross-sections are semi-circles perpendicular to the y-axis.
- **d**) the volume rotated about the line y = 2.
- e) the volume rotated about the *y*-axis.

Answers

1a)	$A = \int_0^2 \left(2x - x^2\right) dx$
1b)	$\frac{1}{6}\int_{-1}^{5} \left(x^2\right) dx$
1c)	$V = \frac{\sqrt{3}}{4} \int_0^2 \left(2x - x^2\right)^2 dx$
1d)	$V = \pi \int_0^2 \left[(2x+3)^2 - (x^2+3)^2 \right] dx$
1e)	$V = \pi \int_{0}^{4} \left[\left(\sqrt{y} + 2 \right)^{2} - \left(\frac{1}{2} y + 2 \right)^{2} \right] dy$
2a)	50.265
2b)	80.425
2c)	187.658
3a)	152.681
3b)	67.858
4 a)	0.016
4b)	0.032
5a)	1.079
5b)	0.165
5c)	0.024
6a)	25.133
6b)	80.425
6c)	53.617
6d)	120.637
7a)	/.146
7b) 7 a)	-2.10/
7c)	6.8/5
7 d)	101.02

7e) 85.3